Using Multi Speed Deflectometer for Network Pavement Strength Assessment

Presentation by Peter Scott (AT) and Lily Grimshaw (Geosolve)

Date 12 May 2022

The AT Network

- 7,722 km of Road
- Rural roads 2,951 km (38%)
- Urban roads 4,771 km (62%)
- Sealed roads 6,883 km (89%)
- Unsealed roads 839 km (11%)

Traffic Loading on the AT Network

isto	church	City	•		
1800		2000		22	00

Current Pavement Condition 2021 AMP based on 2022 based on PII Roughness

Pavement Renewal Deterioration Model

Intervention point 9 Intervention point 10 Intervention point 11 Intervention point 12 Intervention point 13 Intervention point 14 Intervention point 15

2021 AMP future condition / funding profile

NZTA Research Report 599

- Current RAMM TSA does not include pavement strength (FWD)
- Report 599 recommends:
 - Use composite indices (SCI and PII) rather than individual faults
 - Use FWD to determine pavement failure mode -Radius of curvature and Central Deflection
 - Identifying failure mode is important shallow (shear) failure in upper layers or deep seated failure determines treatment
- Further research required

The need to collect pavement strength data

- To monitor pavement structural condition
- Long term pavement deterioration modelling (SNP)
- Developing short and long term pavement renewal programmes and funding requirements
 - 3 year Delivery PFRs and Design
 - 10 year RLTP (regional land transport program)
 - 30 year AMP

ng (SNP) renewal

RIMS FWD Guidelines

Collection and Interpretation of **Pavement Structural** Parameters using **Deflection Testing**

PART I: NETWORK ASSET MANAGEMENT

DECEMBER 2012

Pavement Structural Parameters using **Deflection Testing**

Collection and Interpretation of

PART II: PROJECT LEVEL

MARCH 2013

Current Pavement Strength Data for AT

Current Source of SNP

- Project Level FWD
- Network Level FWD
- No Information

What is "Multi Speed Deflectometer"

Continuous navement hetwork stre leve Add In

ent

1 re

San

Len

MSD Use in New Zealand

MSD Use in AT

Primaries, Arterials, Kainga Ora, Waiheke, Great Barrier: 4,460 lane kms (dual wheel path)

Validating MSD for AT

$$SNC = (1/25.4) \sum_{i=1}^{nlayer} a_i h_i + SNSG$$

SNSG = 3.5 log₁₀ CBR - 0.85(log₁₀ CBR)² - 1.43 $a_i = a_q (E_i / E_q)^{0.33}$

SNP (FWD) is a function of:

Pavement layer thickness Subgrade CBR Layer moduli

SNP (MSD) is a function of: Lower Layer Parameter

Base Layer Parameter Transfer Function to FWD Calib Data

Validating MSD for AT: Per Site

BUCKLAND RD (MANGERE) R1 (50915)

- FWD Data
- MSD Data (LWP)

Validating MSD for AT: Per Site

QUEEN ST (WAIUKU) L1 (70838)

MSD Data (LWP)

Validating MSD for AT: Per Site

WHITFORD PARK RD R1 (52666)

FWD Data

MSD Data (LWP)

Validating MSD for AT: Across Network

SNP (MSD) vs SNP (FWD)

Note only treatment lengths with project level FWD testing data was considered above.

Note only treatment lengths with project level FWD testing data was considered above.

Conclusions

- Per site validation examples show:
 - Good relationship between MSD and FWD 5 pt moving average slope
 - Highlights the benefits of using MSD in lieu of FWD network level testing for STL identification (Buckland Rd)
- Across Network validation examples show:
 - Wide spread between MSD and FWD median readings per RAMM treatment length
 - Numerous variables contribute to this however we have identified a dependency on surface macrotexture

Recommendations

- Current Recommended Use for MSD:
 - Network level structural testing
 - Homogenous Treatment Length Identification
 - Identifying locations for targeted FWD testing

ification testing

Future Work

- Development of additional MSD derived distress modes
- Condition Index (PII) calculated from structural data rather than surface defects data + roughness (2023 AMP?)
- Automated STL generation from MSD data
- Remaining life refinements according to RPP approach (later presentation)
- 30 year Forward Work Plan based on MSD structural data

Questions

Thank you.

