FWD Pavement Life Analysis Austroads vs RPP

Presentation by Peter Scott (AT) and Lily Grimshaw (Geosolve)

12 May 2022

AT Pavement Renewal Process (PFR)

- PFR based on Waka Kotahi procedures
- Monetised benefits and costs manual v1.5 August 2021 (nzta.govt.nz)
- Site assessment
- Review maintenance history RAMM data
- FWD testing of site
- NPV Analysis
- Existing maintenance strategy patch and seal
- Rehabilitation or Reconstruction
- **Deferred Rehabilitation**

AT Pavement Renewal Strategy

Based on faults not pavement strength (FWD) results

Table 5.3: Pavement Renewal Decision Matr	x (Based on Failure Spread over Treatment Area)
---	---

	Failures	Pavement Renewal Recommendation - Percentage of failure spread area over treatment area						
Failure Type	Failure Definition	Regional	Arterial	Primary Collector	Secondary Collector	Low Volum Access		
Alligator Cracking	Visible Cracking	≥ 25%	≥ 30%	≥40%	≥ 50%	≥ 709		
Pumping	Visible Pumping	≥ 25%	≥ 30%	≥ 40%	≥ 50%	≥ 709		
Rutting	Rutting ≥ 10mm	≥ 25%	≥ 30%	≥ 40%	≥ 50%	≥ 709		
Shoving	Shoving ≥ 10mm	≥ 25%	≥ 30%	≥ 40%	≥ 50%	≥ 709		
Block Cracking	Visible Cracking	≥ 25%	≥ 30%	≥ 40%	≥ 50%	≥ 709		
Roughness	≤ 60km/hr: NAASRA ≥ 150 >60km/hr: NAASRA ≥ 120	≥ 25%	≥ 30%	≥ 40%	≥ 50%	≥ 709		
Potholes	≥ 1 x pothole (incl. repairs) / 50m (on average)	100%	100%	100%	100%	2009		
Combined spread	Total Coverage (combined)	≥ 25%	≥ 30%	≥ 40%	≥ 50%	≥ 709		

"Primary Collector" road,

tegy VD)

AT Pavement Testing Practice

- Geosolve has been doing FWD testing for AT since 2014 (consistency of data)
- Network level FWD testing (65%)
- Project level FWD testing (16%)
 - All rehab and asphalt sites for design
 - Remaining life calculation/graph
 - Sites need rehab but rehab life charts show good pavement life

FWD Spacing (m/test)

Mahunga Dr Rp 960 – 1171 PFR

Option cost estimates

	Heavy Maintenance		Rehabilitation option	
Item				
Construction / Implementation		N/A	\$	740,610.00
PV Construction / implementation (a)		N/A	\$	698,688.68
PV Maintenance, renewal and operating (b)(c+d)	\$	922,388.75	\$	118,300.03
PV Total costs (whole of life) (A)(B)	\$	922,388.75	\$	816,988.71
PV Total costs (first 7 years)	\$	864,713.50	\$	699,263.50

Net Present Value (NPV)	\$ 105,400.03
Economic Indicator (EI)	-0.6

Mahunga Dr 0.960 - 1.171 (51793)

(51793) Hastie Ave (+23 m) to Miro Rd (-145 m)

Cement / FBS Stabilisation Depth (mm)

Mahunga Dr Rp 586 – 960 PFR

Option cost estimates

	Heavy Maintenance		Rehabilitation option	
Item				
Construction / Implementation		N/A	\$	1,312,740.00
PV Construction / implementation (a)		N/A	\$	1,238,433.96
PV Maintenance, renewal and operating (b)(c+d)	\$	1,690,944.49	\$	209,849.43
PV Total costs (whole of life) (A)(B)	\$	1,690,944.49	\$	1,448,283.39
PV Total costs (first 7 years)	\$	1,588,515.37	\$	1,239,008.78
	10			
Net Present Value (NPV)			\$	242,661.10

Net Present Value (NPV)	\$ 242,
Economic Indicator (EI)	-0.7

Binsted Rd Rp 6 – 187 PFR

Option cost estimates

	Do minimum option		Rehabilitation optic	
Item				
Construction / Implementation	N/A		\$	519,506
PV Construction / implementation (a)	N/A		\$	490,100
PV Maintenance, renewal and operating (b)(c+d)	\$	758,667.25	\$	106,878
PV Total costs (whole of life) (A)(B)	\$	758,667.25	\$	596,979
PV Total costs (first 7 years)	\$	681,831.79	\$	490,675
Net Present Value (NPV)			\$	161,688
Economic Indicator (EI)		1		-0.8

Binsted Rd 0.006 - 0.187 Lane L1 (41190)

Millhouse Dr Rp 149 – 725 PFR **Option cost estimates**

	Hea	vy Maintenance	
Item			
Construction / Implementation		N/A	5
PV Construction / implementation (a)		N/A	5
PV Maintenance, renewal and operating (b)(c+d)	\$	2,870,662.73	Ş
PV Total costs (whole of life) (A)(B)	\$	2,870,662.73	5
PV Total costs (first 7 years)	\$	2,709,847.12	-

Net Present Value (NPV)	\$
Economic Indicator (EI)	

Rehabilitation option 1,840,125.00 1,735,966.98 328,359.09 2,064,326.07 1,736,541.80

NZTA Research Report 599

- Current RAMM TSA does not include pavement strength (FWD)
- Report 599 recommends:
 - Use composite indices (SCI and PII) rather than individual faults
 - Use FWD to determine pavement failure mode -Radius of curvature and Central Deflection
 - Identifying failure mode is important shallow (shear) failure in upper layers or deep seated failure determines treatment
- Further research required

Austroads Models

- Austroads 2011-2012 Part 5 Pavement Evaluation and **Treatment Design**
- Austroads GMP

Figure 8.2: Pavement model for mechanistic procedure

Figure 6.5: Design deflections to limit permanent deformation

Regional Precedent Performance (RPP)

 Premise: Calculate and compare mechanistic and empirical parameters derived using the full-time history FWD deflection bowl

Mahunga Dr Revisited with RPP

Mahunga Dr L1

Remaining Life RPP Structural remainingLifeGMP remainingLifeAustroads2011Mod

Remaining Life RPP Structural remainingLifeAustroads2011Mod

Binsted Rd Revisited with RPP

Remaining Life RPP Structural remainingLifeGMP remainingLifeAustroads2011Mod

Critical RPP Distress Mode:

Remaining Life RPP Structural remainingLifeGMP remainingLifeAustroads2011Mod

Millhouse Dr Revisited with RPP

Saturated Basecourse

Remaining Life RPP Structural remainingLifeGMP remainingLifeAustroads2011Mod

Critical RPP Distress Mode:

Conclusions

- Austroads models (GMP and 2012 AC Overlay) can overestimate pavement life
- **RPP vs Austroads**
 - RPP shows lower remaining life consistent with observed distress on rehab sites
 - RPP "sees" structural distress otherwise missed by Austroads
- **Recommendations:**
 - Consider RPP structural remaining life magnitude and extents in **PFRs**
 - Opportunities to refine rehab extents and depths for Millhouse
 - Refine NPV calculations to consider RPP structural results

Future

- Provide Austroads and RPP analysis results in FWD reports for use in PFRs
- Use Composite Indices and FWD data in renewal strategy
- Consider ALL relevant pavements data
 - HSD
 - FWD
 - MSD
 - **RAMM** Maintenance
 - **RAMM Visual Classification**
 - Surfacing Date
 - Layer Date
 - **Traffic Information**

Questions

Thank you.

